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Introduction 
 
Information Technology has gradually, but radically, reshaped the environment in 

which we work, communicate, and do business.  These changes in our work environ-

ments put new demands on workers.  Problem solving, information processing skills, 

and the ability to interact with intelligent tools are gradually replacing crystallized in-

telligence, clerical speed and accuracy. 

The IT Aptitude Battery tests measure an aspect of general cognitive ability 

that has become increasingly important since the advent of Information Technology.  

That is, the ability to interact efficiently with systems that have a dynamics of their 

own. These systems have become an indispensable part of the fabric of post-industrial 

society and vary in complexity from MS Office software tools to complex information 

systems monitoring industrial processes.  The cognitive skill required for using such 

devices is called procedural knowledge, or procedural skill.   
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Figure 1.  An ATM cash-out procedure. 

States:   S1, …, S4, where 
   S1: identity unknown & amount requested unknown & ac-   
   count unknown & balance unknown; 

S2: amount requested unknown & account unknown & balance unknown; 
   S3: account unknown & balance unknown; 
   S4: balance unknown; 
Input Signals:  c (insert card), a (amount requested), d (determine account); 
Output Signals: o1 (instruction), o2 (question), o3 (question), o4 (evaluation information); 



Procedural skills 
 
Procedural knowledge is the knowledge that a person utilizes to interact with a physi-

cal, or a conceptual, system to achieve a particular goal.  As an example of a simple 

procedure to interact with a physical system, imagine someone using an ATM to cash 

money.  To achieve this goal this person must perform certain actions in response to 

output signals generated by the ATM.  Figure 1 gives a schematic representation of the 

procedure to cash-out money from an ATM.   To be able to do this successfully this 

person somehow should have acquired a representation of the function that governs 

the state transitions of this machine (Ippel and Beem, 1997).  The ATM procedure is 

simple because each state transfers to the next upon a specific input action.  The com-

plexity of procedures can increase significantly when the same set of input actions 

have different effects depending on the state in which the system is.   Examples of 

such more complex forms of procedural knowledge were described for the domain of 

computer programming (Ippel and Meulemans, 1998), and for remotely controlling a 

UAV payload camera (Ippel and Watson, 1998).  

In general, a procedural skill comprises knowledge of the appropriate input sig-

nals (user actions), knowledge of how these signals affect the system’s state transi-

tions and knowledge of the output signals that indicate the system’s current state so 

that the appropriate signal can be fed into the system when needed to achieve a 

particular goal.   

Traditional tests of intelligence have a limited potential in tapping procedural 

knowledge.  Within the traditional test paradigm it is very difficult, if not impossible, to 

capture the intricacies of procedural skills.  Procedural skills typically consist of se-

quences of actions in response to state changes in a physical (or conceptual) system.  

To measure just the final result of these action sequences misrepresents the nature of 

procedural skills.  As a result, traditional tests of general cognitive ability, or general 



intelligence, have limited capacity to assess the natural variation in aptitude for acquir-

ing procedural knowledge (Ippel & Hurwitz, 1998). 

Mechanisms Of Procedural Skill Learning 

The present approach to measurement of procedural knowledge acquisition is based on 

recent results in the cognitive sciences with respect to development of procedural 

knowledge (e.g., Newell, 1990; Van Lehn, 1990).  In Artificial Intelligence research as 

well as in cognition psychology thinking is modeled as searching through a state space  

- the search space.  In psychology this search space is referred to as a problem space 

(Newell and Simon, 1972; Newell, 1990; Van Lehn, 1990).  This problem space consists 

of a finite set of states, including an initial state and a goal state, and a finite set of 

(admissible) operators to transform one state into another.   

The basic mechanisms of procedural skill learning are (1) the repeated applica-

tion of an elementary search control cycle (i.e., observe the system’s current state, 

provide some action input, and observe the effect).  The goal of the search is to find a 

proper sequence of actions that will transform the initial state of the system into the 

goal state, and (2) compilation, a process in which the search control knowledge in-

creasingly becomes deterministic.  The final result of compilation is that individual no 

longer searches for a sequence of operators, but executes a pre-existing program (i.e., 

a procedure) to achieve the goal.  

The operation of this elementary search control cycle can vary from a com-

pletely random choice of new states to a completely deterministic choice of every fol-

lowing state, depending upon the (search control) knowledge of individual of the task 

environment.  Procedural learning is thus modeled as increasing determinism in the 

individual’s search control knowledge.  When little knowledge is available, the learner 

has to rely on very general problem solving techniques (weak search methods).  Al-



though inefficient compared to the task-specific methods of someone familiar with the 

task, these weak search methods often provide the only basis for intelligent action 

(Ippel and Meulemans, 1990).  Some examples are: generate-and-test, hill-climbing, 

means-ends analysis (Rich, 1983).  While these methods have shown up first in AI in-

vestigations of problem solving, they seem to provide for a natural description of hu-

man problem solving behavior as well.  There is evidence that even young children use 

such problem solving methods (e.g., Byrnes & Spitz, 1979; Borys, Spitz, & Dorans, 

1982; Klahr, 1985). 

The IT Aptitude Battery consists of two tests, each designed in such a way that 

only one of these weak search techniques can be applied.  The Hidden Target Test 

measures an individual’s ability to solve problems and build an algorithm using a hill-

climbing technique and the Battery Test measures the ability to use a means-ends ap-

proach to build an algorithm to solve a particular class of problems. 

Characteristics of ITAB task environments 
 
The ITAB test tasks were designed in analogy to an essential aspect of the job of a 

computer programmer / systems analyst, which is, to define an algorithm (or a set of 

algorithms) that can solve a well-defined class of problems.  Each of the ITAB tests 

consists of a class of problems for which the examinee has to develop an algorithm 

that solves these problems efficiently.  The tests measure how examinees incorporate 

feedback from the system into their follow-up actions and how quickly this leads to a 

build-up of an efficient algorithm.   



Data flow  
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Figure 2.  Recoding scheme for HTT data. 

 

Into a Markov 
Chain 

Into an AI code

A specific feature of the ITAB tests that the data stream is recoded into two 

separate codes.  The first is a so-called Markov Chain code (analysis of action se-

quences) and the second is a so-called Artificial Intelligence code (analysis of “intelli-

gence” of each step) (see Figure 2). 

 

A Markov model is used to analyze the sequential patterns.  A Markov model is a  
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Figure 3.  Markov Model of the HTT process. 



probabilistic model, which describes a process of state changes in a system.  Figure 3 

shows the Markov model used to analyze the sequential aspect of the Hidden Target 

Test data.  The model is characterized by three states.  The first state (G) is called GUESSING.  

The subject either has not received any feedback on an action and has to make a guess (first 

guess), or does not seem to incorporate the feedback into his action.  The second state (P) is called 

PROBLEM SOLVING.  The subject chooses his or her next action based on the previous feedback.  

The last state (S) is called PROBLEM SOLVED.  Once the Markov process has arrived in this state, 

the process terminates.  S is called an absorbing state; the other states are transient states.   

ENT: General Performance Scores 
 
The most important outcome of the Markov model analysis is the expected value of the 

number of steps to reach a solution for a particular individual (ENT-score).  In Cognitive 

Psychology this parameter is often referred to as the length of the solution path (Newell 

& Simon, 1972; Newell, 1990) and is generally held to be indicative for the difficulty the 

individual is experiencing in solving a problem.  Each ITAB test has an ENT-score, viz., 

ENT_H (for the Hidden Target Test) and ENT_B (for the Battery Test). 

 In order to get a better understanding of the nature of these scores, we will have 

a closer look at the mechanisms that generate those scores.  For the sake of brevity, in 

this paper we will focus on the mechanism that generate the ENT_H score. 



select (st) 

   path := path + St 
goal? 
(st) 

t := t + 1 

solved 
1 

0 

Figure 4.a.  A generate-and-test method testing locations  

in the Hidden Target task environment. 

 

 The Hidden Target Test generates a task environment in which the individual has 

to locate a hidden target in a search field.  Upon each guess or test the system gives 

feedback in terms of distance of the guess or test to the hidden target.  Figure 4.a 

shows the most elementary form of a so-called “generate-and-test” function (G&T 

method) that can produce a solution path.  This G&T function generates a state ran-

domly, and passes this state on to an evaluation function that subsequently tests 

whether it is a goal state (i.e., D (St) = 0).  In this most elementary form no intelligence 

is involved.  It is clear that this process may generate very long solutions paths (i.e., 

high ENT scores).  Note the counter in Figure 4.a (i.e., t := t + 1) representing a count-

ing / cataloguing process performed by a (minimal) memory function to prevent the sys-

tem from selecting the same state every time. 



select (st) 

 path := path + St 

t := t + 1 

set search direction 

goal? 
(st) 

0 

D(St) 
< 

D(St-1) 

1 
solved 

1 

 change search direction 

Figure 4.b.  A hill-climbing method testing locations  

in the Hidden Target task environment. 

 

 Where does intelligence come in?  In this process mechanism intelligence is usu-

ally modeled by augmenting the evaluation function in such a way that it provides an 

ordering principle for at least a subset of the states in the problem space.  This method 

is known as hill-climbing (see Figure 4.b).  Note that in an advanced form this process 

mechanism also requires an augmented memory function.  In this advanced form his 

augmented memory should not only remember past states, but also be able to uphold 

simultaneously a representation of a (sub) set of states considered in one evaluation 



act.   

In the Hidden Target Test the operation of this augmented evaluation function is 

measured in two independent ways.  First, the Markov model analyzes the sequence of 

steps on one particular aspect: is step st closer to the goal state then st-1? (see second 

test box in Figure 4.b: D(St+1) < D(St), where D = distance).  If so, it is concluded that 

the individual is thinking.  If not, it is concluded that he or she is guessing.  Based on 

this analysis the Markov model estimates the expected value of the length of a solution 

path.  Other more diagnostic outcomes of the analysis are estimates of the mean length 

of holding times for problem solving and for guessing. 

 Second, we were able to quantify the working of the heuristic function by apply-

ing Information Theory (Ash, 1965; Attneave, 1959; Krippendorff, 1986; Shannon & 

Weaver, 1949)).  We distinguish two aspects in information processing: (1) How well 

does the individual use the information available in the feedback provided by the task 

environment? (2) How does this affect the amount of information processing per step? 

• We measure the intelligence of each step in the problem solving process by com-

paring the information value of the next step chosen with the step that would 

generate the maximum value.  The information value is measured in binary units 

per step (bits/step).  The difference between the actual step and the best possi-

ble step defines an information loss.  A maximally efficient problem solving proc-

ess has a zero information loss.  This variable is referred to as UHI in Table 1. 

• Once the individual produced a step in the problem space, we can compare the 

level of uncertainty (H) before the step, that is, H (t-1) with the uncertainty after 

the step (H (t).  A reduction in uncertainty level is a measure of information 

gained by that step.  This variable referred to as IET in Table 1. 



Table 1.   PM correlations between HTT scores and WPT (N = 161). 
                

  ENT-H GT PST   IET UHI RT 
ENT-H               

GT 0.335             
PST -0.480 -0.368           

                
IET -0.604 -0.769 0.433         
UHI 0.380 0.918 -0.464   -0.785     
RT 0.480 -0.230 -0.035   -0.094 -0.160   

                
WPT -0.357 -0.247 0.379   0.360 -0.265 -0.235

                
 

Since the IET and UHI variables are purely mathematical constructs, and true by defini-

tion, they can be used to validate the interpretation of the ENT-score and of the holding 

time variables derived from the Markov model.  

 Table 1 shows the results of a study on a sample that was representative for the 

adult US population.  The results show a strong correlation between ENT and IET (r = 

0.604, df = 160), suggesting that a shorter solution path goes with higher levels of in-

formation extraction per step.  Information loss correlates at a more moderate level with 

the ENT-score (r = 0.380, df = 160).  An important finding supporting the consistency of 

the conceptual framework of the test is the finding that higher levels of  loss of feedback 

information strongly decrease the amount of information extracted per step (r(IET, UHI) 

= -0.785, df = 160).  The correlations of the information measures with the estimated 

cycle lengths of the Markov model states are consistent with expectations. 



Table 2.  P.M. Correlations with External Variables. 
          
   ENT-H ENT-B   
          
  WPT -0.357 -0.201   
  WMC -0.281 -0.356   
          
  Conscientiousness 0.123 0.092   
  Extraversion -0.061 -0.112   
  Neuroticism 0.065 0.048   
  Openness -0.042 -0.041   
  Agreeableness -0.036 -0.016   
          
  age  0.095 0.288   
  gender -0.189 -0.042   
  yrs of education  0.002  0.123   
          
  N = 161 144   
          

Correlations with external variables  

Table 2 shows correlations of both ENT-scores with a classical measure of general intelli-

gence (Wonderlic Personnel Test) and a composite score of two experimental Working 

Memory Capacity tests of the US Air Force (WM-S1 and WM-V1).  

Table 3.  Reliability Coefficients for several HTT scores. 

 G-C1 SH1 n 
ENT-H2 0.969 0.979 190 

RT 0.932 0.973 188 
IET 0.880 0.900 188 
UHI 0.927 0.988 188 

1 G-C = Guttman-Cronbach’s alpha; SH = Split-Half Coeff. 
2 Estimate based on analysis of number of steps per trial. 

Reliability of the ENT-scores 

Table 3 reports Guttman-Cronbach alpha values and split-half reliabilities for several 

Hidden Target Tests discussed so far.  Table 4 reports the BT counterparts of those 

indices. 



In general, the values presented in Table 4 were somewhat lower than those 

presented in Table 3.  The reason is probably an error in the test administration:  the 

time per trial was erroneously set at 1 minute per trial instead of two minutes per trial.  

Table 4.  Reliability Coefficients for several BT scores. 

  G-C1  SH1 n 
ENT-B2 0.792 0.792 128 

RT 0.873 0.884 128 
Hrem 0.835 0.848 128 
Errors 0.868 0.881 128 

1 G-C = Guttman-Cronbach’s alpha; SH = Split-Half Coeff. 
2 Estimate based on analysis of number of steps per trial. 

Discussion 

Developments in Information Technology have a twofold effect on human performance 

testing.  First, the work-environment is changing and creates the need for new skills 

and aptitudes to acquire those skills.  For example, cognitive skills required in dealing 

with interactive devices (e.g., database systems, programming environments, semi-

automated systems).  Second, Information technology has a unique potential to ad-

vance the field of human performance assessment to domains of cognitive functioning 

that previously were not accessible.  For example, traditional tests do not capture the 

intricacies of procedural skills adequately.  Even when technical knowledge is the 

measurement objective, it is being treated as declarative knowledge (e.g., the ASVAB, 

the primary test battery for selection and classification of the US Military).  Information 

technology makes it possible to design tests capture the dynamics of behavior, and 

enables a high-density sampling of cognitive process indices. 

 CogniMetrics’ IT Aptitude Battery embodies a set of innovations based on the 

possibilities of Information technology.  Essential elements of the Hidden Target Test 

are: (1) the test provides an interactive environment, and (2) actions of the examinee 

are not scored as singleton answers to distinct problems, but are analyzed as se-

quence patterns.  Complete interactivity is achieved by creating an internal represen-



tation of the task-environment. Artificial Intelligence technology is used to compute 

the "intelligence" of each step taken by the examinee. 

This paper focuses on only one of the ITAB tests: the Hidden Target Test for 

reason of brevity and because this test is more intuitively accessible than the Battery 

Test, the other ITAB test.  The conclusions hold for both tests.    
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